Part Number Hot Search : 
UR3KB100 GRM21 MV71004 AP2204 M79C9 CM6800AG DS240 124JR
Product Description
Full Text Search
 

To Download SKW07N12008 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  skw07n120 power semiconductors 1 rev. 2_2 sep 08 fast igbt in npt-technolog y with soft, fast recovery anti-parallel emcon diode ? lower e off compared to previous generation ? short circuit withstand time ? 10 s ? designed for: - motor controls - inverter - smps ? npt-technology offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability ? qualified according to jedec 1 for target applications ? pb-free lead plating; rohs compliant ? complete product spectrum and pspice models : http://www.infineon.com/igbt/ type v ce i c e off t j marking package skw07n120 1200v 8a 0.7mj 150 c k07n120 pg-to-247-3 maximum ratings parameter symbol value unit collector-emitter voltage v ce 1200 v dc collector current t c = 25 c t c = 100 c i c 16.5 7.9 pulsed collector current, t p limited by t jmax i cpuls 27 turn off safe operating area v ce 1200v, t j 150 c - 27 diode forward current t c = 25 c t c = 100 c i f 13 7 diode pulsed current, t p limited by t jmax i fpuls 27 a gate-emitter voltage v ge 20 v short circuit withstand time 2 v ge = 15v, 100v v cc 1200v, t j 150 c t sc 10 s power dissipation t c = 25 c p tot 125 w operating junction and storage temperature t j , t stg -55...+150 soldering temperature, wavesoldering, 1.6mm (0.063 in.) from case for 10s t s 260 c 1 j-std-020 and jesd-022 2 allowed number of short circuits: <1000; time between short circuits: >1s. g c e pg-to-247-3
skw07n120 power semiconductors 2 rev. 2_2 sep 08 thermal resistance parameter symbol conditions max. value unit characteristic igbt thermal resistance, junction ? case r thjc 1 diode thermal resistance, junction ? case r thjcd 2.5 thermal resistance, junction ? ambient r thja 40 k/w electrical characteristic, at t j = 25 c, unless otherwise specified value parameter symbol conditions min. typ. max. unit static characteristic collector-emitter breakdown voltage v (br)ces v ge =0v, i c =500 a 1200 - - collector-emitter saturation voltage v ce(sat) v ge = 15v, i c =8a t j =25 c t j =150 c 2.5 - 3.1 3.7 3.6 4.3 diode forward voltage v f v ge =0v, i f =7a t j =25 c t j =150 c - 2.0 1.75 2.4 gate-emitter threshold voltage v ge(th) i c =350 a, v ce = v ge 3 4 5 v zero gate voltage collector current i ces v ce =1200v,v ge =0v t j =25 c t j =150 c - - - - 100 400 a gate-emitter leakage current i ges v ce =0v, v ge =20v - - 100 na transconductance g fs v ce =20v, i c =8a 6 - s dynamic characteristic input capacitance c iss - 720 870 output capacitance c oss - 90 110 reverse transfer capacitance c rss v ce =25v, v ge =0v, f =1mhz - 40 50 pf gate charge q gate v cc =960v, i c =8a v ge =15v - 70 90 nc internal emitter inductance measured 5mm (0.197 in.) from case l e - 13 - nh short circuit collector current 1) i c(sc) v ge =15v, t sc 10 s 100v v cc 1200v, t j 150 c - 75 - a 1) allowed number of short circuits: <1 000; time between short circuits: >1s.
skw07n120 power semiconductors 3 rev. 2_2 sep 08 switching characteristic, inductive load, at t j =25 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) - 27 35 rise time t r - 29 38 turn-off delay time t d(off) - 440 570 fall time t f - 21 27 ns turn-on energy e on - 0.6 0.8 turn-off energy e off - 0.4 0.55 total switching energy e ts t j =25 c, v cc =800v, i c =8a, v ge =15v/0v, r g =47 ? , l 1) =180nh, c 1) =40pf energy losses include ?tail? and diode reverse recovery. - 1.0 1.35 mj anti-parallel diode characteristic diode reverse recovery time t rr t s t f - - - 60 ns diode reverse recovery charge q rr - 0.3 c diode peak reverse recovery current i rrm - 9 a diode peak rate of fall of reverse recovery current during t f di rr /dt t j =25 c, v r =800v, i f =8a, di f /dt =400a/ s - 400 a/ s switching characteristic, inductive load, at t j =150 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) - 30 36 rise time t r - 26 31 turn-off delay time t d(off) - 490 590 fall time t f - 30 36 ns turn-on energy e on - 1.0 1.2 turn-off energy e off - 0.7 0.9 total switching energy e ts t j =150 c v cc =800v, i c =8a, v ge =15v/0v, r g =47 ? , l 1) =180nh, c 1) =40pf energy losses include ?tail? and diode reverse recovery. - 1.7 2.1 mj anti-parallel diode characteristic diode reverse recovery time t rr t s t f - - - 170 ns diode reverse recovery charge q rr - 1.1 c diode peak reverse recovery current i rrm - 15 a diode peak rate of fall of reverse recovery current during t f di rr /dt t j =150 c v r =800v, i f =8a, di f /dt =500a/ s - 110 a/ s 1) leakage inductance l and stray capacity c due to dynamic test circuit in figure e.
skw07n120 power semiconductors 4 rev. 2_2 sep 08 i c , collector current 10hz 100hz 1khz 10khz 100khz 0a 5a 10a 15a 20a 25a 30a 35 a t c =110c t c =80c i c , collector current 1v 10v 100v 1000v 0.1a 1a 10a dc 1ms 200 s 50 s 15 s t p =5 s f , switching frequency v ce , collector - emitter voltage figure 1. collector current as a function of switching frequency ( t j 150 c, d = 0.5, v ce = 800v, v ge = +15v/0v, r g = 47 ? ) figure 2. safe operating area ( d = 0, t c = 25 c, t j 150 c) p tot , power dissipation 25c 50c 75c 100c 125c 0w 25w 50w 75w 100w 125w 150w i c , collector current 25c 50c 75c 100c 125c 0a 5a 10a 15a 20a t c , case temperature t c , case temperature figure 3. power dissipation as a function of case temperature ( t j 150 c) figure 4. collector current as a function of case temperature ( v ge 15v, t j 150 c) i c i c
skw07n120 power semiconductors 5 rev. 2_2 sep 08 i c , collector current 0v 1v 2v 3v 4v 5v 6v 7v 0a 5a 10a 15a 20a 25a 15v 13v 11v 9v 7v v ge =17v i c , collector current 0v 1v 2v 3v 4v 5v 6v 7 v 0a 5a 10a 15a 20a 25a 15v 13v 11v 9v 7v v ge =17v v ce , collector - emitter voltage v ce , collector - emitter voltage figure 5. typical output characteristics ( t j = 25 c) figure 6. typical output characteristics ( t j = 150 c) i c , collector current 3v 5v 7v 9v 11 v 0a 5a 10a 15a 20a 25a t j =-40c t j =+150c t j =+25c v ce(sat) , collector - emitter saturation voltage -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v i c =16a i c =4a i c =8a v ge , gate - emitter voltage t j , junction temperature figure 7. typical transfer characteristics ( v ce = 20v) figure 8. typical collector-emitter saturation voltage as a function of junction temperature ( v ge = 15v)
skw07n120 power semiconductors 6 rev. 2_2 sep 08 t , switching times 0a 5a 10a 15a 20a 10ns 100ns t r t d(on) t f t d(off) t , switching times 0 ? 20 ? 40 ? 60 ? 80 ? 100 ? 10ns 100ns 000ns t r t d(on) t f t d(off) i c , collector current r g , gate resistor figure 9. typical switching times as a function of collector current (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, r g = 47 ? , dynamic test circuit in fig.e ) figure 10. typical switching times as a function of gate resistor (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, i c = 8a, dynamic test circuit in fig.e ) t , switching times -50c 0c 50c 100c 150c 10ns 100ns t r t d(on) t f t d(off) v ge(th) , gate - emitter threshold voltage -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v typ. min. max. t j , junction temperature t j , junction temperature figure 11. typical switching times as a function of junction temperature (inductive load, v ce = 800v, v ge = +15v/0v, i c = 8a, r g = 47 ? , dynamic test circuit in fig.e ) figure 12. gate-emitter threshold voltage as a function of junction temperature ( i c = 0.3ma)
skw07n120 power semiconductors 7 rev. 2_2 sep 08 e , switching energy losses 0a 5a 10a 15a 20a 0mj 1mj 2mj 3mj 4mj 5mj e on * e off e ts * e , switching energy losses 0 ? 20 ? 40 ? 60 ? 80 ? 100 ? 0.0mj 0.5mj 1.0mj 1.5mj 2.0mj 2.5mj e ts * e on * e off i c , collector current r g , gate resistor figure 13. typical switching energy losses as a function of collector current (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, r g = 47 ? , dynamic test circuit in fig.e ) figure 14. typical switching energy losses as a function of gate resistor (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, i c = 8a, dynamic test circuit in fig.e ) e , switching energy losses -50c 0c 50c 100c 150c 0.0mj 0.5mj 1.0mj 1.5mj 2.0mj e ts * e on * e off z thjc , transient thermal impedance 1s 10s 100s 1ms 10ms 100ms 1 s 10 -3 k/w 10 -2 k/w 10 -1 k/w 10 0 k/w 0.01 0.02 0.05 0.1 0.2 single pulse d =0.5 t j , junction temperature t p , pulse width figure 15. typical switching energy losses as a function of junction temperature (inductive load, v ce = 800v, v ge = +15v/0v, i c = 8a, r g = 47 ? , dynamic test circuit in fig.e ) figure 16. igbt transient thermal impedance as a function of pulse width ( d = t p / t ) *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. c 1 = r 1 r 1 r 2 c 2 = r 2 r ,(k/w) , (s) 0.1020 0.77957 0.40493 0.21098 0.26391 0.01247 0.22904 0.00092
skw07n120 power semiconductors 8 rev. 2_2 sep 08 v ge , gate - emitter voltage 0nc 20nc 40nc 60nc 80nc 0v 5v 10v 15v 20v u ce =960v c , capacitance 0v 10v 20v 30v 100pf 1nf c rss c oss c iss q ge , gate charge v ce , collector - emitter voltage figure 17. typical gate charge ( i c = 8a) figure 18. typical capacitance as a function of collector-emitter voltage ( v ge = 0v, f = 1mhz) t sc , short circuit withstand time 10v 11v 12v 13v 14v 15v 0 s 5 s 10 s 15 s 20 s 25 s 30 i c(sc) , short circuit collector current 10v 12v 14v 16v 18v 20v 0a 50a 100a 150a v ge , gate - emitter voltage v ge , gate - emitter voltage figure 19. short circuit withstand time as a function of gate-emitter voltage ( v ce = 1200v, start at t j = 25 c) figure 20. typical short circuit collector current as a function of gate-emitter voltage (100v v ce 1200v, t c = 25 c, t j 150 c)
skw07n120 power semiconductors 9 rev. 2_2 sep 08 t rr , reverse recovery time 200a/ s 400a/ s 600a/ s 800a/ s 0ns 50ns 100ns 150ns 200ns 250ns 300ns 350ns i f =3.5a i f =7a q rr , reverse recovery charge 200a/ s 400a/ s 600a/ s 800a/ s 0.00c 0.25c 0.50c 0.75c 1.00c 1.25c 1.50c i f =3.5a i f =7a di f /dt , diode current slope di f /dt , diode current slope figure 21. typical reverse recovery time as a function of diode current slope ( v r = 800v, t j = 150 c, dynamic test circuit in fig.e ) figure 22. typical reverse recovery charge as a function of diode current slope ( v r = 800v, t j = 150 c, dynamic test circuit in fig.e ) i rr , reverse recovery current 200a/ s 400a/ s 600a/ s 800a/ s 0a 5a 10a 15a 20a 25a i f =3.5a i f =7a di rr /dt , diode peak rate of fall of reverse recovery current 200a/ s 400a/ s 600a/ s 800a/ s 0a/ s 100a/ s 200a/ s 300a/ s i f =3.5a i f =7a di f /dt , diode current slope di f /dt , diode current slope figure 23. typical reverse recovery current as a function of diode current slope ( v r = 800v, t j = 150 c, dynamic test circuit in fig.e ) figure 24. typical diode peak rate of fall of reverse recovery current as a function of diode current slope ( v r = 800v, t j = 150 c, dynamic test circuit in fig.e )
skw07n120 power semiconductors 10 rev. 2_2 sep 08 i f , forward current 0v 1v 2v 3v 4v 0a 5a 10a 15a 20a t j =25c t j =150c v f , forward voltage 0c 40c 80c 120c 0.0v 0.5v 1.0v 1.5v 2.0v 2.5v 3.0v i f =3.5a i f =14a i f =7a v f , forward voltage t j , junction temperature figure 25. typical diode forward current as a function of forward voltage figure 26. typical diode forward voltage as a function of junction temperature z thjcd , transient thermal impedance 10s 100s 1ms 10ms 100ms 1 s 10 -1 k/w 10 0 k/w 0 .0 1 0 .02 0.05 0.1 0.2 single pulse d =0.5 t p , pulse width figure 27. diode transient thermal impedance as a function of pulse width ( d = t p / t ) c 1 = r 1 r 1 r 2 c 2 = r 2 r ,(k/w) , (s) 0.75885 0.09354 0.88470 0.00543 0.85670 0.00042
skw07n120 power semiconductors 11 rev. 2_2 sep 08 5.44 0.55 6.04 5.49 1.68 3.68 4.17 20.82 16.25 15.70 1.05 3.50 19.80 13.10 3 min 1.90 4.90 2.27 1.07 1.85 1.90 0.238 0.216 0.066 0.145 0.164 0.075 0.820 0.640 0.618 0.022 0.193 0.089 0.042 0.073 0.041 0.075 0.138 0.780 0.516 0.68 6.30 6.00 17.65 2.60 5.10 14.15 3.70 21.10 16.03 20.31 1.35 4.47 2.41 5.16 2.53 1.33 2.11 max 2.16 0.027 0.214 3 0.248 0.236 0.695 0.557 0.102 0.201 0.831 0.631 0.053 0.146 0.799 0.176 min max 0.095 0.203 0.099 0.052 0.083 0.085 0 7.5mm 5 5 0 17-12-2007 03 z8b00003327 2.87 2.87 0.113 0.113 3.38 3.13 0.133 0.123 m m pg-to247-3
skw07n120 power semiconductors 12 rev. 2_2 sep 08 figure a. definition of switching times i rrm 90% i rrm 10% i rrm di /dt f t rr i f i, v t q s q f t s t f v r di /dt rr q=q q rr s f + t=t t rr s f + figure c. definition of diodes switching characteristics p(t) 12 n t(t) j figure d. thermal equivalent circuit figure b. definition of switching losses figure e. dynamic test circuit leakage inductance l =180nh, and stray capacity c =40pf.
skw07n120 power semiconductors 13 rev. 2_2 sep 08 published by infineon technologies ag 81726 munich, germany ? 2008 infineon technologies ag all rights reserved. legal disclaimer the information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. with respect to any examples or hint s given herein, any typical values stated herein and/or any information regarding the application of the devic e, infineon technologies hereby disclaims any and all warranties and liabilities of any kind, including without lim itation, warranties of non-infringement of intellectual property rights of any third party. information for further information on technology, delivery terms and conditions and prices, please contact the nearest infineon technologies office (www.infineon.com). warnings due to technical requirements, components may co ntain dangerous substances. for information on the types in question, please contact the nearest infineon technologies office. infineon technologies components may be used in life-support devices or systems only with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. if they fail, it is re asonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of SKW07N12008

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X